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Abstract. A new medel for the explanation of the universal dielectric response law is
proposed. It differs significantly from all previous work on the subject. The presented model
is based on the assumption that individual dipoles and their environment do not remain
independent during the process of relaxation. Therefore the time &, needed for the regression
toequilibrium of polarization fluctuations is a random variable that depends for each relaxing
dipole on two other random variables: the waiting time 7, and the dissipation rate §;,. Asa
consequence we derive a general relaxation equation that gives the universal dielectric
responsein the power-law form (as aspecial case, the stretched exponential form is obtained).

1. Introduction

The dielectric properties of materials have been the subject of experimental and theor-
etical investigations for many years. This is not only due to the need for an understanding
of the electrical properties of various technological materials, but it has also been realized
that the basic physics of the dielectric response leads to interesting questions about the
theoretical description of physical phenomena in disordered materials.

Not long after Debye had formulated, in 1912, his theory of dipole relaxation in
liquids [1], it was realized that his prediction of an exponential decay for polarization
fluctuations regressing to equilibrium was not obeyed by most of the systems investigated
[2]. The traditional explanation for this behaviour has been to assign a local value to the
relaxation time for each dipole, and hence recover the observed regression by suitable
distribution [3]. Typically, experimental data are described by empirical functions [4]
whose parameters are related to the distribution appropriate to the material investigated.
This attempt has the advantage of retaining the stochastic features of Debye’s original
concept of independently relaxing dipoles in a viscous medium that acts as a random
noise source,

Conventional Debye relaxation

@(t) = @q exp(—t/70) (1)

is characterized by a single relevant relaxation time 7,,. The simplest way to obtain a
different result for ¢(¢) is to postulate a statistical distribution of relaxation times T across
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different atoms, clusters or degrees of freedom. Then, with the assumption of additive
contributions to the relaxing quantity, it is natural to write

#)= [ wx) exp(~1/7) dr. @
0

This approach is microscopically arbitrary and it is also associated with a picture of
parallel relaxation, in which each degree of freedom relaxes independently with charac-
teristic time 7, [5-15]. Contrary to models that were based on a parallel addition of
relaxation contributions, the model presented in [16] proposes a serial summation of a
hierarchy of relaxations extending over the same spatial range. The authors pointed out
that a group of dipoles must adopt a specific configuration before a subset can relax,
which then releases the constraints preventing a further subset from relaxing, and so on.
However, although it has been realized in many approaches that the individual dipoles
and their environment do not remain independent during the regression of fluctuation,
as yet no microscopic model has been based directly on this conclusion. The exception
isthe cluster modei [17-22], which derived entirely new expressions from a consideration
of the way in which the energy contained in fluctuation is distributed over a system of
interacting clusters. This is also the only theory in which the results obtained are in
agreement with empirical functions input to fit the experimental data for ¢(#) in the
short-time limit ¢ < w ;' and the long-time limit > @', where @, is the loss-peak
frequency.

However, most proposed probabilistic models derive the experimental results for
the short-time limit and agree in inputting the behaviour in this range to the progressive
involvement of a hierarchy of self-similar dynamic processes; at times greater than
w,' agreement either between the models or with the experiment is no longer main-
tained.

The purpose of this paper is to present a new probabilistic model for dielectric
relaxation. The main features of this approach are as follows:

(i) The universal dielectric response law can be derived in a simple analytical form
from a general relaxation equation, postulated earlier in a special case in [23].

(ii) The response function agrees with empirical functions input to fit the exper-
imental data in both short- and long-time Hmits.

(iii) In contrast to the cluster model of Dissado and Hill [17-22] our approach suggests
arelation between the experimental parameters m and n defining, respectively, the Jow-
and high-frequency branches of the complex dielectric susceptibility,

2. The experimental evidence

A growing number of dielectric relaxation data show that the classical Debye behaviour
is hardlyever observed experimentally [24-31]. It has been found [26] that the asymptotic
frequency dependence of the dielectric susceptibility

x(w) = x'() ~ iy{w)
follows a common universal pattern for virtually all kinds of materials. Namely, the
behaviour

(@) = x'(0) = (o/w,)"! for w» w, (3)
and

x'(w) =¥ (0) — x'(0) = (w/w,)" for w<aw, 4
is observed over many decades of frequency. The parametersQ<n<land0<m<1
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(illustrating the shape of the dielectric response) together with the static polarization
%'(0) and w,, the loss-peak frequency, can give a complete description of the relaxing
system. The frequency dependence given by equation (3) implies that the real and
imaginary components of the complex susceptibility obey at high frequencies the fol-
lowing relation [32]:

¥'(@)/x' (@) = cot(n/2) (3)

which suggests that y(w) has a constant phase independent of frequency. The exper-
imental behaviour of equation (4) leads to a similar frequency-independent rule [33].
Corresponding to the high-frequency relation (5) the following ratio for the low-fre-
quency polarization decrement can be written

x(@)/[x'(0) = x'(@)] = tan(ms/2). (6)

The relations (5) and (6) underline the differences in the nature of the low- and high-
frequency polarization processes. Equation (5) shows that when the system is driven by
an Ac field the energy recoverable per cycle remains a constant fraction of the work done
by the field, independent of frequency in the frequency range @ > w,. When the system
is driven by an Ac field in the frequency range w < @, then it follows from (6) that the
energy lost per cycle has a constant relationship to the extra energy that can be stored
by a static field.

The corresponding time dependence of the depolarization current can be given by
means of the response function f(¢). The response function [20] describes the regression
of a natural fluctuation in the property %, following its delta function generation
E(t"y = E,(¢") at zero time

AD(D) = f " e - VB ar, 0

The most common method of determining the response function for a chosen property
is by measurement of the frequency-dependent susceptibility y(w) given by

x(w) = re‘“’”f(r) dr = — re“w‘d—wgdt. (8)

0 0 dr

Hence, the early phase of the regression obeys the following time power-law decay

[y =(wt)™" 1<y ©)

and by (5) is governed by a constant relationship, dependent upon »r, which defines
the partitioning of the original information of the fluctuation into recoverable and
irrecoverable portions. The final stage of the regression to equilibrium is governed by a
constant relationship between the energy (information) dissipated and that remaining
tobe dissipated, equation (6), and the fluctuation regresses asymptotically to equilibrium
having the form

) = (w11 >yt (10)
1t has been suggested [8-16] that the Williams—Watts function
Aty =17 exp[—(w,H)'™"] (11)

can mimic a wide variety of behaviour because of the slow change in the frequency
dependence of its Fourier transform in the region of w < w,. However, this agreement
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is more apparent than real, and when the frequency range is large enough the value of
n determined for w > w,, is insufficient to define the whole process [21, 22]. Similarly
measurements of f(#) made in the time domain are often not extended far enough beyond
wy ! to distinguish between the Williams—Watts function and other alternative
expressions.

In general the observed behaviour is that of equation (10) with exponentm #1 — n.
When the complete frequency dependence can be measured at a constant temperature,
the deduced values of n and m are normally found not to change for the portions of the
same response obtained at different temperatures [18, 20]. Even when this wide range
of measurement is not possible the deduced value of m is usually observed to remain
constant over a given temperature range, except for cryogenic temperatures. Therefore
suggestions that deviations at low frequency (® < w,) are due to a temperature-depen-
dent change in n cannot be accepted and the empirical result can be taken as a true
description of the situation.

3. The probabilistic model

It is evident that the universal relation has the property (5), which implies a constant
phase angle mentioned above, but which may also be stated in terms of energy stored
E, and energy lost E; per radian

E\/E, = cot(nn/2). (12)

This property is a direct consequence of the power-law relation and it does not in any
way depend on any particular physical model; if the power law (3) applies, then equation
(12} follows inevitably whatever the mechanism. Equation (12) refers to macroscopic
polarization. It has been proposed [34] that the argument could be reversed by stating
that if any system displayed the property that the energy lost per reversal of every
microscopic polarization was independent of the rate of reversal, then the macroscopic
property (12} would likewise be satisfied and the relaxation of the polarization would
have to follow a fractional power law.

This approach was first adapted by Jonscher {26, 35, 36] to hopping electronic
systems under the name of ‘screened hopping’ and was subsequently extended to dipolar
situations both below and above w, [37]. The model relies on the evident notion that in
a typical solid the microscopic dipolar, electronic or ionic transitions are very rapid {on
the scale of picoseconds or less) and they take place in a system in which electrostatic or
strain interactions are invariably present but the adjustment of local equilibrium takes
a much longer time to be effected. The consequence of this is a constant energy loss per
reversal of microscopic polarization, which leads to the universal relation.

Interactions may be of several types, i.e. electrostatic, mechanical, quantum-mech-
anical or chemical, and their general consequence is to make the movements of the
individual relaxing entities more difficult as the strength of the interactions increases.
Moreover, the interactions determine the way in which the relaxation process takes
place. Generally, in systems under study, this influence will affect an individual relaxing
entity in a random way. The moment of the practically instantaneous transition for the
ith hopping movement will be random as also will be the screening adjustment time
connected with the ith abrupt jump. The moment of a transition of the ith dipole is fully
described by the waiting time, 1;, whereas the screening adjustment time is described
by the dissipation rate 8; = 1/7,. Thus the experimental time &, (i.e. the time needed for
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o s ! t Figure 1. Schematic representation of the depo-

\ s ; larization process for the /th dipole.

the regression to equilibrium of polarization fluctuations) of the ith dipole, as the sum
of the waiting time and the screening adjustment time, is stochastically dependent on n;
and S; (figure 1). For a system consisting of a large number of relaxing dipoles we have
to determine the probability that the whole system stays in initially given states up to the
experimentally observed time ¢, with constraints in the form of random waiting time #;
and random dissipation rate B, for each dipole.

Following the above discussion we introduce formally all the needed quantities:

(i) Let {n} be a sequence of independent, identicaily distributed, non-negative
random variables with common distribution function

F,(s) = P(n; <s). (13)

P(n; < 5) denotes the probability that the waiting time 5, for the ith dipole is less than 5.
For simplicity we denote

R(s) =1 = Fy(s) = P(n; =3) (14)

where R(s) is a continuous decreasing function with properties: R(0) =1 and
lim,_,.. R(s} = 0. Observe that R(s) denotes the probability that the waiting time for the
ith dipole is not less than s. The function R(s), in probability theory, is just known as the
reliability function [38).

(ii) Let {8} be a sequence of independent, identically distributed, non-negative
random variables with common distribution function

F4(b) = P(8, <b). (15)

P(f3; < b) denotes the probability that the dissipation rate §, for the ith dipole is less than
b. Without loss of generality one can assume that there exists a sequence of positive
constants {a,} such that the nth power of the Laplace transform of the distribution
function Fy converges to the limit transform G, as n— o

[£(Fg; t/an)]" —2 GO). (16)
For convenience, we subsequently use in this paper the following notation:

P(Fgst/a,) = J-x exp(—bt/a,) dF4(b)

0

where the above integral is the Stieltjes integral of exp(—bt/a,) with respect to the
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distribution function Fg. This notation should not be taken for the traditional meaning
of the Laplace transform

L(f.9) = | exp(=xiftx) dx
0
where the last integral is the Lebesque integral of exp(—x¢)f(x) with respect to dx.
From the physical point of view such an assumption means the existence of a
macroscopic limit dissipation rate for the whole system consisting of » relaxing dipoles.
The macroscopic dissipation rate is a normalized sum of independent rates §8;, i.e.

21 (B./a,).

(iti) Let {6;} be a sequence of independent, identically distributed, non-negative
random variables described by the conditional probability

P(8, = 1B, = b, n, = 5) = exp[—(b/a,) min(t, 5)]. (17)

Equation (17) means the probability of the event that the ith dipole stays in its initial
state up to the moment ¢, given the events 5; = b and 5, = 5. According to the stochastic
features of Debye’s original concept of independently relaxing dipoles in a viscous
medium, we use the conventional exponential formula. Let us also stress that formula
(17) expresses the fact that the experimental time §; is stochastically dependent on the
waiting time », and the dissipation rate §3;.

4. General relaxation equation

From the law of total probability [39], which is one of the most fundamental formulae
of probability analysis, we have

PO, =118, =b) = [ P8, =18, =1, =5)dF,(0) (1)
4]

where F,(s) is the waiting time distribution function. Now substituting expression
(17) and dF,(s) = — R'(s) ds, cf (14), we get

S (6,118 =b) =3 [ expl[~(b/a,) min(t,)}R'(s) ds. 19)
i dr 0

Now splitting the interval of the integration [0, 42} into two sub-intervais [0, ¢] and
[¢, +%°), and using the fact that the function min(¢, 5) is equal to s on the first sub-interval
and t on the second, we find that the above integral is

dr! b , dr= b ,
_aLexp(wzs)R(s)ds a?j, exp(—at)R(s)ds

- —exp( - f:t)R’(t) - %cxp( - % t) frx R'(s) ds

= -—exp( - -5;— t)R’(t) - %exp( - a% t) [R(=) — R(1)]
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b t)R’(t) + -(%exp( - it)R(t).

a,

= —exp(
Finally we have
d d b
EP(Bi = 1B, = b) = R() &—texp( - Zt)' (20)
Applying once again the law of total probability to equation (20), we get

- aﬁr) dF(b).

d =d
@ P(8, =)= R(f) fo Y exp(
As the above integral is uniformly convergent with respect to ¢, by the Leibnitz rule we

can thus interchange the order of differentiation and integration in the above formula.
Hence

) 4ry(6) = R 5 €5 ). e1)

&y

d d =
a;P(B,- =) = R(1) afo exp(

$(Fj; t/a,) denotes here the Laplace transform of the distribution function Fj in the
sense of the Stieltjes integral. Since

%[P(Gl- =) =n{P(8; = )" % [P(8; = 1)) (22)
then introducing expression (21) with the derivative

= 8y 1fa,)
evaluated from a formula similar to (22), we have
S [P0, > 1) = [P(6, > DI ROILEy: tfan)] ™ T [HEps ha, )] @)
Now taking the limit as n — %, and using the assumption (16), we obtain

Etpl,lfi [P(8; =1)]" = ix_rg [P(6; = D]""R(?) %log G(). (24)

Observe that we can write

{min 9,-2:}= M (@ =14

1=i=n Isisn
Using the assumption that 8; are independent, identically distributed we have

1imp{min e,.;x}=1imp{ N (e,-at)}=iii1i{}’(8,-zr)]". (25)

] isisn n—sx l=<i<n

The left-hand side of formula (25), which is the probability that the whole system,
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consisting of a large number n of relaxing dipoles, stays in its initial state up to the
experimentally observed time ¢, defines the relaxation function g(#):

o(f) = lim P{ min 6, = :}. (26)

1=si%n

Thus, substituting equation (26} into (24), we obtain a general relaxation equation

£ 9() = GOR() 5108 GO @)

Recall that G(¢) is the Laplace transform of a distribution function F, which is just the
distribution function of a limit random variable to which the sequence of normalized
sums ZB,/a, converges in law. So, in other words, Fjy is attracted to F. The set of all
distribution functions that are attracted to F is called the domain of attraction of
the distribution F. It is well known in probability theory [40] that only Lévy-stable
distributions have domains of attraction, so the Laplace transform of the non-negative
Lévy-stable distribution can be written, cf {14}, as

G(t) = exp(—t*) 0<a<l (28)

Thus the relaxation equation has the following form

d
00 = - RO (29)
and consequently the relaxation function is given by

o) =goexp — e [ RGs)s™ ds) (30)
[t}

where w, is the loss-peak frequency.

5. The universal dielectric response

In order to obtain the response function

)=~ S0 &)

in an explicit form one has to choose the function R(s) defined by formula (14). From
the mathematical point of view it is just a decreasing reliability function. From the
physical point of view, for disordered dipolar systems it is obvious that the intensity
function

As) = — dR(s)/ds (32)

cannot be constant. So for the non-negative random variable we can take the reliability
function given, for example, by the Weibull distribution [38], namely,

R(s) = exp(—ks®) (33)

where k is a positive real number, and 0 < 6 < 1. From the analysis of experimental data
f22] it follows that in the short-time limit both the power law as well as the Williams—
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Watts function can be used. Hence we have to take 8 = o and & equal to any small
number. The reliability function (33) can be written now in the following form:

R(s) = 1/(1 + ks*) k>0 O<a<l. (39)

Substituting (34) into equation (30) we obtain the following relaxation function:

@(t) = @o[1 + k(w,0)*] 71k, (35)
Observe that
lim @(1)— exp[ — (w,1)°] (36)

i.e. the relaxation function (35) tends to the stretched exponential form, predicted by a
number of probabilistic models [5-16]. The stretched exponential form (36) of the
relaxation function is always obtained when only one probabilistic mechanism is con-
sidered: long-tail distribution of waiting times or relaxation times. '

Note also that the relaxation function (35) satisfies the following equation

d
3 P = —e@y (@) o] (37)

which agrees with the equation introduced to describe high-order chemical reactions
[41]. when k is a natural number, and has the form of 2 unimolecular fractal equation of
motion [11, 13, 42, 43], with a solution in the form (36) when k = 0.

It is easy to show that the response function, obtained from the derived relaxation
function (35),

A = goaw, (0, ) [1 + k(w,r)*] (1+4/k (38)
has the short-time limit
fB) = (wp1)*~' = (wp) ™" (39)

where n = 1 — &, and obviously 0 < » < 1; and the long-time limit
Rt = (wpr) =k = (e 1) =m (40)

wherem = o/k,and0<m < lifa<k.

Thus the derived formula (38), for the response function, agrees with experimental
results in both limits: < w;! and £ > w3, But, in contrast to common opinion that the
parameters m and # are not related [44, 45], we get the following relationship

m=(1-n)/k (41)

where £ > 1 — nand 0 < n < 1. We can differentiate the following two cases.

@ 1-n<k=1,thenl1-n=m<1 (as is observed in most analysed exper-
imental data [45]): for k=1, m=1— n (this case is recognized as the Cole-Cole
response; for k = 1 — n, m = 1 (this case is recogpized as the Cole-Davidson response).

(i) If £ > 1, then 0 < m <1 — n (as is observed only in a small number of analysed
data [45]).
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N
\.:\\Vk__y_
\ ‘%\ kn 1! Figure 2. The time dependence of the response
\ R N functions for a dipolar system with an exponential
o0 (e) and universal peak characteristics for o =
CLI T N (1 — 1) = 0.65 (other curves). The behaviour of
log fu,th universal response functions as k — 0 is shown,

Figure 2 shows the difference between the classical Debye (1) and the universal time-
domain response (38). In the case when k£ — 0 the Williams-Watts response (11) is
obtained.

Since & is connected with the waiting time distribution for the relaxing dipoles, cf
equation (33), it may express the strength of interactions. The interactions are considered
as primarily constraints for dipolar motions [16] (one dipole cannot move until another
one moves out of the way}. The parameter k, introduced in equation (34), plays an
important role in determining the probability R(s) = P(r, = s) that the waiting time for
the ith dipole is not less than 5. Namely, the greater the parameter &, the smaller is the
probability R(s). It can be shown that the function R(s) corresponding to waiting times
n, willalways have the approximate form (34). Thisis a consequence of the extreme value
theorem, cf [46]. For a more physical discussion of the significance of the parameter &,
we refer to [47].

6. Concluding remarks

We have shown that it is possible to describe the universal dielectric response by means
of aprobabilistic method. The model presented is based on the observation that the time
8, needed for the regression to equilibrium of polarization fluctuations is a random
variable for each relaxing dipole. Since individeal dipoles are dependent on their
environment during the process of relaxation, 8, depends stochastically on the waiting
time 7; and on the dissipation rate §;.

Using one of the basic formulae of probability analysis, i.e. the law of total
probability, we derived the new relaxation equation for the probability @(¢) of finding
the whole relaxing system in its initial state up to the experimentally observed time 7.
Next, we have shown that taking a particular waiting time distribution function, the
solution @{r) can be obtained in a simple analytical form

@)=, 1—n,k) t<l-n<1 k>0

which, in the case when the distribution of waiting times is neglected (k— 0), tends to
the stretched exponential relaxation function. The stretched exponential form, as shown
in figure 2, is of no use for describing the relaxation process in real systems.
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The response function f{f) obtained in our model agrees in the short- as well as the
long-time limit with the empirically postulated power law. Moreover, the relationship
between the parameters /m and r has been derived: m = m(k, #). Thisrelation underlines
the influence of the waiting time distribution on the dissipation rate distribution in the
long-time limit only.
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