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Abstract. A new model for the explanation of the universal dielectric response law is 
proposed. It differssignificantly from all previous work on the subject. The presentedmodel 
is based on the assumption that individual dipoles and their environment do not remain 
independentduringthe processofrelaxation.Thereforethe time 8,neededfortberegression 
toequilibrium ofpolarization Ructuationsisarandomvariable thatdependsforeachrelaxing 
dipole on two other random variables: the waiting time q,  and the dissipation rate 8,. As a 
consequence we derive a general relaxation equation that gives the universal dielectric 
responsein the power-law form (asaspedalcase, thestretchedexponenlialformisobtained), 

1. Introduction 

The dielectric properties of materials have been the subject of experimental and theor- 
etical investigations for many years. This is not only due to the need for an understanding 
oftheelectricalpropertiesofvarioustechnologicalmaterials, butithasalso been realized 
that the basic physics of the dielectric response leads to interesting questions about the 
theoretical description of physical phenomena in disordered materials. 

Not long after Debye had formulated, in 1912, his theory of dipole relaxation in 
liquids [l], it was realized that his prediction of an exponential decay for polarization 
fluctuationsregressing to equilibrium was not obeyed by most of the systems investigated 
[2]. The traditional explanation for this behaviour has been to assign a local value to the 
relaxation time for each dipole, and hence recover the observed regression by suitable 
distribution [3]. Typically, experimental data are described by empirical functions [4] 
whose parametersare relatedto the distribution appropriate tothe material investigated. 
This attempt has the advantage of retaining the stochastic features of Debye’s original 
concept of independently relaxing dipoles in a viscous medium that acts as a random 
noise source. 

Conventional Debye relaxation 

do = vo exP(-dzo) (1) 

is characterized by a single relevant relaxation time to. The simplest way to obtain a 
different result for q(t) is to postulate a statistical distribution of relaxation times t across 
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different atoms, clusters or degrees of freedom. Then, with the assumption of additive 
contributions to the relaxingquantity, it is natural to write 

q(t) = I" w(r )  exp( -I/z) dr .  (2) 
0 

This approach is microscopically arbitrary and it is also associated with a picture of 
parallel relaxation, in which each degree of freedom relaxesindependently with charac- 
teristic time '6, [5-15]. Contrary to models that were based on a parallel addition of 
relaxation contributions, the model presented in [I61 proposes a serial summation of a 
hierarchy of relaxations extending over the same spatial range. The authors pointed out 
that a group of dipoles must adopt a specific configuration before a subset can relax, 
which then releases the constraints preventing a further subset from relaxing, and so on. 
However, although it has been realized in many approaches that the individual dipoles 
and their environment do not remain independent during the regression of fluctuation, 
as yet no microscopic model has been based directly on this conclusion. The exception 
is theclustermodel [17-221, whichderivedentirelynewexpressionsfrom aconsideration 
of the way in which the energy contained in fluctuation is distributed over a system of 
interacting clusters. This is also the only theory in which the results obtained are in 
agreement with empirical functions input to fit the experimental data for q(t) in the 
short-time limit I 4 w;' and the long-time limit f > up', where wp is the loss-peak 
frequency. 

However, most proposed probabilistic models derive the experimental results for 
the short-time limit and agree in inputting the behaviour in this range to the progressive 
involvement of a hierarchy of self-similar dynamic processes; at times greater than 
w;' agreement either between the models or with the experiment is no longer main- 
tained. 

The purpose of this paper is to present a new probabilistic model for dielectric 
relaxation. The main features of this approach are as follows: 

(i) The universal dielectric response law can be derived in a simple analytical form 
from a general relaxation equation, postulated earlier in a special case in [23]. 

(ii) The response function agrees with empirical functions input to fit the exper- 
imental data in both short- and long-time limits. 

(iii)Incontrast totheclustermodelofDissadoandHiU[17-22]ourapproachsuggests 
a relation between the experimental parameters m and n defining, respectively, the low- 
and high-frequency branches of the complex dielectric susceptibility. 

2. The experimental evidence 

A growing number of dielectric relaxation data show that the classical Debye behaviour 
is hardlyeverobservedexperimentally [2631]. It hasheen found [26] that the asymptotic 
frequency dependence of the dielectric susceptibility 

follows a common universal pattern for virtually all kinds of materials. Namely, the 
behaviour 

and 

is observed over many decades of frequency. The parameters 0 < n < 1 and 0 < m < 1 

%(U) = x ' (w)  - iX"(0) 

f ( w )  = x ' ( w )  = (w/wp)n- '  for w 9 wp (3) 

f ( 0 )  = %YO) - x'(w) = (w/wp)m for w e wp (4) 
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(illustrating the shape of the dielectric response) together with the static polarization 
~ ' ( 0 )  and opt the loss-peak frequency, can give a complete description of the relaxing 
system. The frequency dependence given by equation (3) implies that the real and 
imaginary components of the complex susceptibility obey at high frequencies the fol- 
lowing relation [32]: 

f ( w ) / ~ ' ( w )  = cot(nn/2) (5) 
which suggests that ~ ( o )  has a constant phase independent of frequency. The exper- 
imental behaviour of equation (4) leads to a similar frequency-independent rule [33]. 
Corresponding to the high-frequency relation (5) the following ratio for the low-fre- 
quency polarization decrement can be written 

x"("(0) - x'(w)l = t a n ( 4 2 ) .  (6)  
The relations (5) and (6) underline the differences in the nature of the low- and high- 
frequency polarization processes. Equation (5) shows that when the system is driven by 
an AC field the energy recoverable per cycle remains a constant fraction of the work done 
by the field, independent of frequency in the frequency range w > up. When the system 
is driven by an AC field in the frequency range w < up, then it follows from (6)  that the 
energy lost per cycle has a constant relationship to the extra energy that can be stored 
by a static field. 

The corresponding time dependence of the depolarization current can be given by 
means of the response functionf(t). The response function [20] describes the regression 
of a natural fluctuation in the property 9, following its delta function generation 
E@') = Eo6(t') at zero time 

A9(t)  = 1 ' At - t ')E(t')  dt' 
-15 

(7) 

The most common method of determining the response function for a chosen property 
is by measurement of the frequency-dependent susceptibility ~ ( w )  given by 

Hence, the early phase of the regression obeys the following time power-law decay 

f(t) = (wpt)-" t 4 0;' (9) 
and by (5) is govemed by a constant relationship, dependent upon n ,  which defines 
the partitioning of the original information of the fluctuation into recoverable and 
irrecoverable portions. The final stage of the regression to equilibrium is governed by a 
constant relationship between the energy (information) dissipated and that remaining 
to bedissipated, equation (6) ,  and the fluctuation regressesasymptotically to equilibrium 
having the form 

At) = (w,t)-m-' t s  0;'. (10) 

At) = t-n exp[ -(opt)'-"] (11) 

It has been suggested [&16] that the Williams-Watts function 

can mimic a wide variety of behaviour because of the slow change in the frequency 
dependence of its Fourier transform in the region of w < wp. However, this agreement 
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is more apparent than real, and when the frequency range is large enough the value of 
n determined for w 9 wp is insufficient to define the whole process 121,221. Similarly 
measurements off(t) made in the time domain are often not extended farenough beyond 
w;' to distinguish between the Williams-Watts function and other alternative 
expressions. 

In general the observed behaviour is that of equation (10) with exponent m # 1 - n. 
When the complete frequency dependence can be measured at a constant temperature, 
the deduced values of n and m are normally found not to change for the portions of the 
same response obtained at different temperatures [18,20]. Even when this wide range 
of measurement is not possible the deduced value of m is usually observed to remain 
constant over a given temperature range, except for cryogenic temperatures. Therefore 
suggestions that deviations at low frequency (w  4 up) are due to a temperature-depen- 
dent change in n cannot be accepted and the empirical result can be taken as a true 
description of the situation. 

3. The probabilistic model 

It is evident that the universal relation has the property (9, which implies a constant 
phase angle mentioned above, but which may also be stated in terms of energy stored 
E, and energy lost E, per radian 

E , / E ,  = cot(nrr/z). (12) 
This property is a direct consequence of the power-law relation and it  does not in any 
way dependon any particular physicalmodel; if the power law (3) applies, then equation 
(12) follows inevitably whatever the mechanism. Equation (12) refers to macroscopic 
polarization. It has been proposed 1341 that the argument could be reversed by stating 
that if any system displayed the property that the energy lost per reversal of every 
microscopic polarization was independent of the rate of reversal, then the macroscopic 
property (12) would likewise be satisfied and the relaxation of the polarization would 
have to follow a fractional power law. 

This approach was first adapted by Jonscher [26, 35, 361 to hopping electronic 
systems under the name of 'screened hopping' and wassubsequently extended to dipolar 
situations both below and above wp 1371. The model relies on the evident notion that in 
a typical solid the microscopic dipolar, electronic or ionic transitions are very rapid (on 
the scale of picoseconds or less) and they take place in a system in which electrostatic or 
strain interactions are invariably present but the adjustment of local equilibrium takes 
a much longer time to be effected. The consequence of this is a constant energy loss per 
reversal of microscopic polarization, which leads to the universal relation. 

Interactions may be of several types, i.e. electrostatic, mechanical, quantum-mech- 
anical or chemical, and their general consequence is to make the movements of the 
individual relaxing entities more difficult as the strength of the interactions increases. 
Moreover, the interactions determine the way in which the relaxation process takes 
place. Generally, in systems under study, this influence will affect an individual relaxing 
entity in a random way. The moment of the practically instantaneous transition for the 
ith hopping movement wiU be random as also will be the screening adjustment time 
connected with the ith abrupt jump. The moment of a transition of the ith dipole is fully 
described by the waiting time, qt. whereas the screening adjustment time is described 
by the dissipation rate pi = 1/zi. Thus the experimental time Bi (i.e. the time needed for 
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l 
0 1 ,  Figure 1. Schematic representation of the depo- 

larization process for the ith dipole. a, 

the regression to equilibrium of polarization fluctuations) of the ith dipole, as the sum 
of the waiting time and the screening adjustment time, is stochastically dependent on qi 
and pi (figure 1). For a system consisting of a large number of relaxing dipoles we have 
to determine the probability that the whole system stays in initially given states up to the 
experimentally observed time I, with constraints in the form of random waiting time vi 
and random dissipation rate p ,  for each dipole. 

Following the above discussion we introduce formally all the needed quantities: 

(i) Let (vi} be a sequence of independent, identically distributed, non-negative 
random variables with common distribution function 

FR(s)  = P(qi <s). (13) 

P(qi < s) denotes the probability that the waiting time vi for the ith dipole is less than s. 
For simplicity we denote 

R(s) = 1 - F , ( s )  = P(vi 2 S) (14) 

where R(s) is a continuous decreasing function with properties: R(0) = 1 and 
lims+ R(s)  = 0. Observe that R(s) denotes the probability that the waiting time for the 
ith dipole is not less thans. The function R(s), in probability theory, is just known as the 
reliability function [38]. 

(ii) Let {Oi} be a sequence of independent, identically distributed, non-negative 
random variables with common distribution function 

Fg(b) = P(Bt < b). (15) 
P(pi < b) denotes the probability that the dissipation rate pi for the ith dipole is less than 
b. Without loss of generality one can assume that there exists a sequence of positive 
constants {un} such that the nth power of the Laplace transform of the distribution 
function Fg converges to the limit transform G, as n + m: 

For convenience, we subsequently use in this paper the following notation: 

WB; t/uJ = [ exp(-bt/a,) dFg(b) 

where the above integral is the Stieltjes integral of exp(-bt/a,) with respect to the 
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distribution function Fg. This notation should not be taken for the traditional meaning 
of the Laplace transform 

~ ( f ,  t )  = Jm exp(-xr)Ax) ctx 
0 

where the last integral is the Lebesque integral of exp(-xt)f(x) with respect to dx. 
From the physical point of view such an assumption means the existence of a 

macroscopic limit dissipation rate for the whole system consisting of n relaxing dipoles. 
The macroscopic dissipation rate is a normalized sum of independent rates pi, i.e. 

n 

(iii) Let {e,} be a sequence of independent, identically distributed, non-negative 
random variables described by the conditional probability 

P(0 ,  2 t ip ,  = b, q ,  =s) = exp[-(b/a,) min(t,s)]. (17) 
Equation (17) means the probability of the event that the ith dipole stays in its initial 
state up to the moment 1. given the events p ,  = band q, = s. According to the stochastic 
features of Debye's original concept of independently relaxing dipoles in a viscous 
medium, we use the conventional exponential formula. Let us also stress that formula 
(17) expresses the fact that the experimental time 0, is stochastically dependent on the 
waiting time qz and the dissipation rate p,. 

4. General relaxation equation 

From the law of total probability [39], which is one of the most fundamental formulae 
of probability analysis, we have 

P(0, 3 tip, = b) = P(0, 3 rip, = q ,  =s) dF,(s) (18) IoX 
where F,(s) is the waiting time distribution function. Now substituting expression 
(17) and dF,(s) = -R'(s) dr. cf (14). we get 

d d "  
- P ( 0 ,  >rlP,=b)= --I exp[-(b/u.) min(t,s)]R'(s)dr. dt (19) 

dt 0 

Now splitting the interval of the integration [0, + m )  into two sub-intervals [0, t ]  and 
[f, +m), andustngthefact that the function min(t,s)isequaltosonthefirst sub-interval 
and ton the second, we find that the above integral is 

= -exp( - :t)R'(t) - Zexp  d 
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b d b 
- - t R'(t) + - exp( - - t)R(r). 

=-exp( a, ) dt a. 

Finally we have 

d d - P(Bi 2 tipi = b) = R(t) - exp dt dt 

Applying once again the law of total probability to equation (20), we get 

-P(ei  d a t) = R(t) 1 " d  ;i;exp( - - I )  b dFp(b). 
dt 0 a. 

As the above integral is uniformly convergent with respect to t, by the Leibnitz rule we 
can thus interchange the order of differentiation and integration in the above formula. 
Hence 

%(Fe; t/a,J denotes here the Laplace transform of the distribution function Fs in the 
sense of the Stieltjes integral. Since 

(22) 
d d 
- [P (e i z r ) ln  = n [ ~ ( e ~ a t ) ] " - ~ - [ ~ ( e ~  zr)] dt dt 

then introducing expression (21) with the derivative 

evaluated from a formula similar to (22), we have 

Now taking the limit as n+ 33. and using the assumption (16), we obtain 

(24) 
d d - lim [P(Oi a t)]" = lim [ P ( e i  2 r)]"'lR(t) -log G(r). dt n-r dt 

Observe that we can write 

Using the assumption that Bi are independent, identically distributed we have 

min ei a t) = lim P ( n (0;  2 t)) = lim [P(Oi 2 I ) ] " .  (25) 
n-= n-= I S i < "  

The left-hand side of formula (Z), which is the probability that the whole system, 
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consisting of a large number n of relaxing dipoles, stays in its initial state up to the 
experimentally observed time f, defines the relaxation function q(t): 

Thus, substituting equation (26) into (24), we obtain a general relaxation equation 

d d 
dt dt  - ~ ( t )  = q(t)R(f) -log G(t). 

Recall that G(r) is the Laplace transform of a distribution function F ,  which is just the 
distribution function of a limit random variable to which the sequence of normalized 
sums 2bi/un converges in law. So, in other words, F, is attracted to F. The set of all 
distribution functions that are attracted to F is called the domain of attraction of 
the distribution F. It is well known in probability theory [40] that only Levy-stable 
distributions have domains of attraction, so the Laplace transform of the non-negative 
Levy-stable distribution can be written, cf 1141, as 

G(t) = exp( - t ") O < c Y < l .  (28) 

Thus the relaxation equation has the following form 

(29) 
d 
dr - ~ ( t )  = - cW"'R(t)q(t) 

and consequently the relaxation function i s  given by 

q(r) = qo exp( - w!"" ~ ( s p - 1  b) (30) 
0 

where w p  is  the loss-peak frequency. 

5. The universal dielectric response 

In order to obtain the response function 

in an explicit form one has to choose the function R(s) defined by formula (14). From 
the mathematical point of view it is just a decreasing reliability function. From the 
physical point of view, for disordered dipolar systems it is obvious that the intensity 
function 

A($) = - dR(s)/ds (32) 

cannot he constant. So for the non-negative random variable we can take the reliability 
function given, for example, by the Weibull distribution [38], namely, 

R(s) = exp(-/d) (33) 

where kisapositiverealnumber,andO < 6 < 1.Fromtheanalysisofexperimentaldata 
[22] i t  follows that in the short-time limit both the power law as well as the Williams- 
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Watts function can be used. Hence we have to take 6 = CY and k equal to any small 
number. The reliability function (33) can be written now in the following form: 

R(s )  = 1/(1 + he) k > O  O < C u < l .  (34) 

q( t )  = qo[l + k(o,t)n]-"r. 

Substituting (34) into equation (30) we obtain the following relaxation function: 

(35) 

Observe that 

lim q(t)+ exp[ - (w,t)"]  (36) 
k-0 

i.e. the relaxation function (35) tends to the stretched exponential form, predicted by a 
number of probabilistic models [5-161. The stretched exponential form (36) of the 
relaxation function is always obtained when only one probabilistic mechanism is con- 
sidered: long-tail distribution of waiting times or relaxation times. 

Note also that the relaxation function (35) satisfies the following equation 

d 
dt -q(t)  = -CYWp(Wpf)"-'[q(f)]~+~ (37) 

which agrees with the equation introduced to describe high-order chemical reactions 
[41], when k is a natural number, and has the form of a unimolecular fractal equation of 
motion [ll, 13,42,43], with a solution in the form (36) when k = 0. 

It is easy to show that the response function, obtained from the derived relaxation 
function ( 3 9 ,  

(38) f(t) = q o a w ,  (wPr)lr-'[1 + k(u,r)"]-('+k)/r 

has the short-time limit 

f(t) = (Wpt)"-'  = ( W p t ) - =  

fit) = (wpt)-(n+W ( ,)- t m - 1 (40) 

(39) 

where n = 1 - CY, and obviously 0 < n < 1; and the long-time limit 

\*.herem = m/k, and0 < m < 1 if CY< k. 

results in both limits: f 
parameters m and n are not related [44,45], we get the following relationship 

Thus the derived formula (38), for the response function, agrees with experimental 
up1 and t P up'. But, in contrast to common opinion that the 

m = (1 - n)/k (41) 

where k > 1 - n and 0 < n < 1 .  We can differentiate the following two cases 

(i) If 1 - n < k S 1, then 1 - n 5 m < 1 (as is observed in most analysed exper- 
imental data [45]): for k = 1, m = 1 - n (this case is recognized as the Cole-Cole 
response; fork = 1 - n, m = 1 (this case is recognized as the Cole-Davidson response). 

(ii) If k > 1, then 0 < m < 1 - n (as is observed only in a small number of analysed 
data [45]). 
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Figure 2. The time dependence of the response 
functions foradipolar systemwithanexponential 
(e) and universal peak characteristics for U = 
(1 - n) = 0.65 (other curves). The behaviour of 
universal response functions as k - 0 i s  shown. 

Figure 2 shows the difference between the classical Debye (1) and the universal time- 
domain response (38). In the case when k+ 0 the Williams-Watts response (11) is 
obtained. 

Since k is connected with the waiting time distribution for the relaxing dipoles, cf 
equation(33), it mayexpressthestrengthofinteractions.Theinteractionsareconsidered 
as primarily constraints for dipolar motions [16] (one dipole cannot move until another 
one moves out of the way). The parameter k, introduced in equation (34), plays an 
important role in determining the probability R(s) = P(v, s) that the waiting time for 
the ith dipole is not less than s. Namely, the greater the parameter k, the smaller is the 
probability R(s). It can be shown that the function R(s) corresponding to waiting times 
q, willalwayshave theapproximateform(34).Thisisaconsequenceoftheextremevalue 
theorem, cf [46]. For a more physical discussion of the significance of the parameter k, 
we refer to [47]. 

6. Concluding remarks 

We have shown that it is possible to describe the universal dielectric response by means 
of aprobabilisticmethod. The model presented is based on the observation that the time 
0, needed for the regression to equilibrium of polarization fluctuations is a random 
variable for each relaxing dipole. Since individual dipoles are dependent on their 
environment during the process of relaxation, Oi depends stochastically on the waiting 
time v i  and on the dissipation rate 6,. 

Using one of the basic formulae of probability analysis, i.e. the law of total 
probability, we derived the new relaxation equation for the probability q(t) of finding 
the whole relaxing system in its initial state up to the experimentally observed time r. 
Next, we have shown that taking a particular waiting time distribution function, the 
solution p(t) can be obtained in a simple analytical form 

d0 = q(t, 1 - n, k) O < l - n < l  k > O  
which, in the case when the distribution of waiting times is neglected (k- 0). tends to 
the stretched exponential relaxation function. The stretched exponential form. as shown 
in figure 2, is of no use for describing the relaxation process in real systems. 
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The response functionflt) obtained in our model agrees in the short- as well as the 
long-time limit with the empirically postulated power law. Moreover, the relationship 
betweentheparametersmandn hasbeenderived: m = m(k,  n) .  Thisrelationunderlines 
the influence of the waiting time distribution on the dissipation rate distribution in the 
long-time limit only. 
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